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A Genetically Encoded Magnetic Resonance Imaging
Reporter Enables Sensitive Detection and Tracking of
Spontaneous Metastases in Deep Tissues
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ABSTRACT
◥

Metastasis is the leading cause of cancer-related death. How-
ever, it remains a poorly understood aspect of cancer biology, and
most preclinical cancer studies do not examine metastasis,
focusing solely on the primary tumor. One major factor con-
tributing to this paradox is a gap in available tools for accurate
spatiotemporal measurements of metastatic spread in vivo. Here,
our objective was to develop an imaging reporter system that
offers sensitive three-dimensional (3D) detection of cancer cells
at high resolutions in live mice. An organic anion-transporting
polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and
its sensitivity was systematically optimized for in vivo tracking of
viable cancer cells in a spontaneous metastasis model. Metastases
with oatp1b3-MRI could be observed at the single lymph node
level and tracked over time as cancer cells spread to multiple

lymph nodes and different organ systems in individual animals.
While initial single lesions were successfully imaged in parallel
via bioluminescence, later metastases were largely obscured by
light scatter from the initial node. Importantly, MRI could detect
micrometastases in lung tissue comprised on the order of 1,000
cancer cells. In summary, oatp1b3-MRI enables longitudinal
tracking of cancer cells with combined high resolution and high
sensitivity that provides 3D spatial information and the sur-
rounding anatomical context.

Significance: AnMRI reporter gene system optimized for track-
ing metastasis in deep tissues at high resolutions and able to detect
spontaneousmicrometastases in lungs ofmice provides a useful tool
for metastasis research.

Introduction
Metastasis is responsible for approximately 90% of cancer-related

mortalities, yet this process remains poorly understood (1). Preclinical
animal studies provide a valuable platform for investigatingmetastasis,
intermediate to reductionist in vitro models and expensive clinical
trials (2). Still, approximately 75% of preclinical animal studies
published in leading cancer journals do not investigate metastasis to
any extent, instead focusing only on the primary tumor, largely due to a
lack of methods for accurate spatiotemporal quantification of meta-
static burden (3). Spontaneous metastasis models, which recapitulate
the entiremetastatic cascade and bettermimic clinical disease, are even
rarer in the literature, as they complicate experiments further with
increased variability between animals in both the rate and site pattern
of metastatic progression (4).

Bioluminescence imaging (BLI) is routinely used for assessing
whole animal burden in experimental metastasis models because of
its high throughput and sensitivity; but assessing total burden on BLI
with accuracy, especially in spontaneous metastasis models that
include primary tumors, remains a challenge. Light scatter from larger
lesions and light attenuation by surrounding tissues contribute to poor
resolution, signal loss and/or obscurement of smaller or more deep-
seated metastases (5). With current imaging methods, lesion size,
depth and precise location remain unclear prior to posthumous
examination. Preclinical studies have therefore paired BLI with tissue
clearing protocols, light-sheetmicroscopy, and deep-learningmethods
for sensitive imaging of metastatic cells at endpoint (6–9). Alternate to
BLI, other approaches include implantation of permanent optical
windows for real-time monitoring of specific tissue sites (10) or
reverting to nonmammalian model organisms to accomplish longi-
tudinal, high resolution, in vivo imaging of metastasis (11).

MRI uniquely provides high resolution, three-dimensional (3D)
spatial informationwith excellent soft tissue contrast and is extensively
used for assessment of primary tumors and metastatic lesions (12, 13).
AlthoughMRI offers versatile contrast mechanisms to enhance lesions
on images, it still faces challenges in detecting small metastases due to
its relatively low sensitivity. Current MRI probes require that lesions
grow to diameters of at least 0.5 mm in lungs of mice, and even larger
diameters at other tissue sites for reliable detection (14, 15). Reporter
genes for MRI have previously been developed to enhance contrast of
cells of interest (16–22), but have not been seriously explored for
preclinical tracking of metastasis.

For example, organic anion-transporting polypeptide 1 (oatp1),
which encodes a 12-transmembrane-domain integral membrane pro-
tein, was previously established as a reporter gene based on its ability to
bind and transport gadolinium ethoxybenzyl diethylenetriamine pen-
taacetic acid (Gd-EOB-DTPA) from the extracellular environment
into oatp1-engineered cells (Fig. 1A; ref. 23). Using variable genetic
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engineering approaches and imaging parameters (Supplementary
Table S1), we and others applied oatp1-MRI to in vivo cancer imaging
of xenografts and orthotopic lesions, and demonstrated its ability to
generate high-resolution images of primary tumor architecture (24),
but at best observed an in vivo detection limit of �106 cells per
lesion (25). Meanwhile, non-MR reporter genes recently achieved
detection of single isolated cells on BLI (26) and detection of lesions on
the order of 104 cells on positron emission tomography (27).

With multiple factors contributing to oatp1-MRI performance,
from genetic construct design to biophysical imaging parameters, we
hypothesized that systematic optimization of the imaging framework
could greatly improve its in vivo detection limit. Accordingly, our
primary objective was to increase the sensitivity of the oatp1-MRI
system for detection and dynamic tracking of oatp1-engineered cancer
cells in a spontaneous metastasis model of breast cancer. We report
that oatp1-MRI produces highly-sensitive, 3D, and high-resolution
images of metastatic progression in live mice over time; we improve
system sensitivity by two to three orders of magnitude relative to
previous studies (23–25), enabling detection of as few as 103 cells per
lesion in lung tissue. Importantly, oatp1-MRI enables detection of
reporter gene signals that are unaffected by tissue depth or the presence
of adjacent lesions. The information afforded by oatp1-MRI thus
enables precise determination of lesion size, depth, and location for
spatiotemporal profiling of metastatic burden in deep tissues of live
animals.

Materials and Methods
Lentivirus production

A lentiviral transfer plasmid co-encoding tdTomato fluores-
cent protein with firefly luciferase 2 was previously cloned (24).
The cDNA for Organic anion transporting polypeptide 1b1
(hOATP1B1/SLCO1B1, NCBI Ref. ID: NP_006437) and 1b3
(hOATP1B3/SLCO1B3, NCBI Ref. ID: NP_062818) were acquir-
ed from VersaClone cDNA Vectors (RDC0160 and RDC0870,
respectively; R&D Systems) and cloned as previously described
(28) into separate lentivirus transfer plasmids each co-encoding
zsGreen fluorescent protein (Fig. 1B). Third-generation packag-
ing and envelope-expression plasmids, pMDLg/pRRE, pRSV-Rev,
and pMD2.G (RRIDs: Addgene_12251, Addgene_12253,
Addgene_12259, respectively; these were gifts from Didier Trono)
were cotransfected with each of the three transfer plasmids
(tdTomato/Luciferase, zsGreen/Oatp1b1, zsGreen/Oatp1b3) into
293T cells using Lipofectamine 3000 according to the manufac-
turer’s lentiviral production protocol (Thermo Fisher Scientific
Inc.). Lentivirus-containing supernatants were harvested 24 h and
48 h post-transfection, filtered through a 0.45-mm filter, and used
immediately for transductions.

Cell culture and stable cell generation
293T (human embryonic kidney, CRL-3216, RRID: CVCL_0063)

and MDA-MB-231 (human triple-negative breast carcinoma,
HTB-26, RRID: CVCL_0062) cell lines were obtained from the
ATCC and cultured in DMEM supplemented with 10% fetal
bovine serum at 37�C and 5% CO2. Cells were routinely verified
as free ofMycoplasma using the MycoAlert Mycoplasma Detection
Kit (Lonza Group). MDA-MB-231 cells were transduced with
lentivirus (multiplicity of infection, MOI ¼ 5) co-encoding tdTo-
mato and firefly luciferase 2, and sorted for tdTomato-positive
cells using a FACSAria III cell sorter (BD Biosciences). The cells
were then expanded and transduced with lentivirus (MOI ¼ 5)

co-encoding zsGreen and Oatp1b1 or Oatp1b3 and FACS was
performed to select for double-positive cells. Sorted cells, referred
to as either Luc-CTL, Luc-1B1, or Luc-1B3, were used for all
subsequent experiments.

In vitro bioluminescence
Cells were seeded into 24-well plates with the following numbers of

cells per well: 1�106, 5�105, 3�105, 1�105, and 5�104. Immediately
after seeding, 0.15-mg/mL D-luciferin was added to each well, and
plates were imaged on an IVIS Lumina XRMS In Vivo Imaging System
(PerkinElmer). Average radiance values in p/s/cm2/sr were measured
from each well using Living Image software (PerkinElmer, RRID:
SCR_014247).

Western blot
Approximately 1 � 106 Luc-CTL, Luc-1B1, and Luc-1B3 cells

were washed 3� in PBS and incubated with 200 mL of chilled RIPA
buffer and protease inhibitors for 30 minutes. Lysates were collected
and sonicated with five 5-s 40-kHz bursts before being centrifuged
at 13,000 g for 20 minutes at 4�C. Supernatants were collected,
quantified and 40 mg of protein from each sample was loaded into
an acrylamide gel composed of a 4.0% stacking layer buffered at
pH 6.8 and a 15% separation layer buffered at pH 8.8. Gel
electrophoresis was performed for 20 minutes at 90 V and 1 hour
at 110 V. Protein was transferred to a nitrocellulose membrane for
7.5 minutes via the iBlot 2 Gel Transfer Device (IB21001, Thermo
Fisher Scientific) and blocked with 0.05% Tween-20, 3% BSA
solution for 30 minutes. Rabbit anti-Oatp1b3 antibody (1:1000
dilution, ab139120, Abcam, RRID: AB_2924978) was added and
incubated overnight at 4�C. The blot was washed 3� with 0.05%
Tween-20 solution for 10 minutes and Goat anti-Rabbit 790-nm
antibody (1:10,000 dilution, A11369, Thermo Fisher Scientific,
RRID: AB_2534142) was added for 45 minutes at room tempera-
ture. The blot was washed again 3� with 0.05% Tween-20 solution
for 10 minutes and imaged on the Odyssey CLx Imaging System
(LI-COR Biosciences, RRID: SCR_014579).

Transmission electron microscopy
A total of 3 � 105 Luc-1B3 cells were seeded and grown on

Thermanox cover slips (150067, Thermo Fisher Scientific) until con-
fluency was reached, after which, cells were incubated with 1 mmol/L
Gd-EOB-DTPA or an equivalent volume of saline in DMEM for
1 hour. Following contrast agent incubation, cells were washed 3 �
with PBS, and incubated for 10 minutes with a 1:1 solution of
Karnovsky’s fixative (2% paraformaldehyde, 2.5% glutaraldehyde in
0.1 mol/L cacodylate buffer, pH ¼ 7.4) and DMEM at 37�C, and then
subsequently incubated for 3 hours with Karnovsky’s fixative at room
temperature. Finally, cells were washed 4�, for 5 minutes each time,
with 0.1 mol/L cacodylate buffer.

Induced coupled plasma mass spectrometry
3 � 105 Luc-CTL and Luc-1B3 cells (n ¼ 3) were seeded in 6-well

plates and allowed to grow for approximately three days, until con-
fluency was reached. Cells were then treated with variable concen-
trations of Gd-EOB-DTPA (0, 1.6, 3.2, 6.4, 9.6, 16.0 mmol/L), washed
3 � with PBS, trypsinized and counted. One million cells of each
condition were harvested and lysed via 20-minute shaking incubation
with 500mL of 25mmol/L Tris*HCl, 150-mmol/LNaCl, 1%NP-40, 1%
sodium deoxycholate and 0.1% sodium dodecyl sulfate. The lysate was
then digested by adding 10% (v/v) HNO3 solution to bring the final
sample volume to 10 mL.
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In vitro nuclear magnetic relaxometry
For all in vitromagnetic characterization experiments, 1� 106 cells

were seeded in T-175 cm flasks and allowed to grow for three days.
Cells were incubated with Gd-EOB-DTPA or Gd-DTPA at specific
concentrations and lengths of time prior to being washed 3�with PBS
and collected for imaging. The following parameterswere used for each
experimental objective:

* For nuclear magnetic relaxation dispersion, cells were incubated
with 16 mmol/L Gd-EOB-DTPA or Gd-DTPA for 1 hour. For
measurements at 3 T, cells were incubated with either 1.6- or
16-mmol/L Gd-EOB-DTPA or Gd-DTPA for 1 hour.

* To evaluate reporter-probe kinetics, Luc-1B3 cells were incubated
with 16-mmol/L Gd-EOB-DTPA for 0, 10, 20, 30, 45, 60, or
90 minutes. In parallel, Luc-CTL cells were incubated with
16-mmol/L Gd-EOB-DTPA and Luc-1B3 cells were incubated
with 16-mmol/L Gd-DTPA for 90 minutes as controls.

* To determine volume fraction sensitivity, Luc-CTL and Luc-1B3
cellswere incubated separatelywith 16-mmol/LGd-EOB-DTPA for
1 hour, counted, and mixed into tubes at the following Luc-CTL
to Luc-1B3 ratios: 1:0 (0%), 99:1 (1%), 195:5 (2.5%), 19:1 (5%), 9:1
(10%), 17:1 (15%), 4:1 (20%), 3:1 (25%), 1:1 (50%), and 0:1 (100%).

Following washing, cells were trypsinized, centrifuged and 1 � 107

cells were counted and placed in 300 mL tubes. Nuclear magnetic
relaxation dispersion data for the resulting cell pellets were acquired at
magnetic fields from 230 mT to 1 T on a fast field-cycling NMR
relaxometer (SpinMaster FFC2000 1T C/DC, Stelar, s.r.l.) by changing
the relaxation field in 30 steps, logarithmically distributed using an
acquisition field of 380.5 mT, all performed at 37�C. Data for each
sample were subsequently fit into a LOWESS spline curve.

In vitro MRI was performed on a 3-T GE clinical MR scanner
(General Electric Healthcare Discovery MR750 3.0 T) using a clinical
16-channel birdcage RF head coil. A phantom comprised of 1%
agarose organized the tubes in a circular pattern to ensure equidistance
of all samples to the coil during imaging. Imaging datawere acquired at
37�Cwith a fast spin-echo inversion-recovery (FSE-IR) pulse sequence
using the following parameters: matrix size ¼ 256 � 256, repetition
time (TR) ¼ 5000 ms, echo time (TE) ¼ 16.4 ms, echo train length
(ETL) ¼ 4, number of excitations (NEX) ¼ 1, receiver bandwidth
(rBW) ¼ �12.5 kHz, inversion times (TI) ¼ 20, 35, 50, 100, 125, 150,
175, 200, 250, 350, 500, 750, 1000, 1500, 2000, 2500, 3000, in-plane
resolution¼ 0.2� 0.2mm2, slice thickness¼ 2.0mm, acquisition time
¼ 5min, 25 s per inversion time. Spin-lattice relaxation rates (R1) were
determined by nonlinear least-squares fitting of signal intensities
across the series of variable inversion time images on a pixel-by-
pixel basis using the following model:

S ¼ k Mss � Mss �Mið Þ � e�TI=T1

�
�
�
�

�
�
�
�
:

Here, S represents the acquired signal, and k is the proportion-
ality constant, which depends on the specific coil used, the main
magnetic field, the proton density, and the temperature, amongst
other factors (29).Mss represents the steady state magnetization,Mi

corresponds to the first value of the inversion recovery curve under
a non-ideal inversion pulse, and TI is the inversion time. This
equation slightly deviates from the standard inversion recovery
equation because it takes into account nonperfect 180� RF pulses
and the delay between the RF excitation and signal acquisition
(30), assuming TR � TI. The absolute value is used because the

stored DICOM images acquired provided only magnitude (non-
phase) information. All calculations were performed on MATLAB
(MathWorks, RRID: SCR_001622). Source code is available upon
request.

Spontaneous metastasis model
Animals were cared for in accordance with the standards of

the Canadian Council on Animal Care, and experiments were under-
taken with an approved protocol of the University of Western Ontar-
io’s Council on Animal Care (AUP 2016–026). Luc-CTL or Luc-1B3
cells (3�105) were implanted into the left 4th mammary fat pad of
female mice (NOD-scid IL2Rgnull strain, NSG, Jackson Laboratory,
RRID: BCBC_1262). BLI was performed after 150 mg/kg D-luciferin
injection. T1-weighted 3T-MRI was performed before and 5 h post
1.3 mmol/kg Gd-EOB-DTPA injection. Detectability of widespread
metastases was evaluated by imaging Luc-CTL and Luc-1B3 mice
(n¼ 3 each) 30 days after cell implantation. A second Luc-1B3 cohort
(n ¼ 7) was imaged over time until endpoint (Day 22–36, dependent
on the overall health of each mouse) to assess dynamic spatiotemporal
tracking of metastatic progression.

In vivo BLI
BLI was performed on an IVIS Lumina XRMS In Vivo Imaging

System (PerkinElmer). Mice were anesthetized with 1–2% isoflurane
using a nose cone attached to an activated carbon charcoal filter for
passive scavenging and administered 150mL of 30 mg/mL D-luciferin
intraperitoneally. Whole-body BLI was acquired with repeated 1.0 s
exposure times every minute for approximately 15 minutes. Once the
maximum signal plateaued, the lower half of the mouse i.e., the
primary tumor site, was shielded with opaque black cloth and the
front limbs of the mice were taped down to fully expose the anterior
thoracic region. The field-of-view was adjusted to fit the upper body
of the mouse and an image was captured with a 5 minute exposure
time. Regions-of-interest (ROI) were manually drawn around
primary tumor borders using LivingImage software (PerkinElmer,
RRID: SCR_014247) to measure bioluminescent average radiance
(p/s/cm2/sr). For measurements of total metastatic burden in the
upper body, rectangular ROIs were drawn according to the perimeter
of the mouse thorax, and total photon flux (p/s/) from this region was
calculated.

In vivo MRI
Mice (n¼ 7)were anesthetizedwith 1–2% isoflurane by using a nose

cone attached to an activated carbon charcoal filter for passive
scavenging and positioned in a lab-built tray that was warmed
to 40�C during MRI. All in vivo MR imaging used a clinical 3-Tesla
GE MR750 clinical scanner (General Electric Healthcare) with a
custom-built insert gradient: inner diameter ¼ 17.5 cm, gradient
strength ¼ 500 mT/m, peak slew rate ¼ 3,000 T/m/s; and a
bespoke 3.5-cm diameter, 5.0-cm length birdcage radiofrequency
coil (Morris Instruments). Precontrast T1-weighted images were
acquired using a 3D Fast Spoiled Gradient Recalled Acquisition in
Steady State (FSPGR) pulse sequence using the following para-
meters: frequency field of view (FOV) ¼ 40 mm, slice thickness ¼
0.2 mm, TR ¼ 14.0 ms, TE ¼ 3.3 ms, matrix size 200�200, rBW ¼
�31.5 kHz, flip angle ¼ 60�, NEX ¼ 3, voxel size ¼ 200 mm
isotropic, scan time ¼ 18–24 minutes per mouse, dependent on
mouse size. Volumes of interest (VOI) were manually delineated
around metastatic lesions in postcontrast images using open-source
code ITK-SNAP (www.itksnap.org, RRID: SCR_002010; ref. 31)
and Horos (horosproject.org, Nimble Co LLC d/b/a Purview, RRID:
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SCR_017340). VOIs were compared on precontrast and post-
contrast images.

Histology
Mice were sacrificed via isoflurane overdose, perfused with 4%

paraformaldehyde through the left heart ventricle, and relevant organs
were carefully excised. Tissues were frozen in OCT medium (Sakura
Finetek) and 10-mm or 150-mm frozen sections were collected onto
glass slides. Whole-tissue microscopy images of fluorescence were
acquired using an EVOS FL Auto 2 Imaging System (Invitrogen)
before hematoxylin and eosin staining of the same and/or adjacent
histology sections and subsequent imaging with the same microscope.
For whole-mouse imaging, sacrificed mice were submerged in hexane
over dry ice for flash freezing, and incubated at�80�C for ≥ 48 hours
prior to imaging on the Xerra System (EMIT Imaging) at 60-mm
isotropic resolutions.

Statistical analysis
Unless otherwise stated, statistical analysis was performed

using Graphpad Prism software (Version 9.00 for Mac OS X;
GraphPad Software Inc.; www.graphpad.com, RRID: SCR_002798).
Unpaired two-tailed t tests, and one or two-way ANOVA and
Tukey post hoc multiple comparisons were performed, depending
on the number of conditions and number of independent vari-

ables. For all tests, a nominal P value less than 0.05 was considered
statistically significant.

Data availability
The data generated in this study are available upon request from the

corresponding authors.

Results
In silico and in vitro protein characterization of OATP1B3
synthetically expressed in a metastasis-competent
cancer cell line

Two lentiviral transfer plasmids, the first encoding tdTomato
fluorescent protein with luciferase and the second plasmid encoding
zsGreen fluorescent protein with oatp1b3 were cloned and packaged
into lentiviral vectors (Fig. 1B). Both transgene cassettes were placed
under regulation of the constitutive human elongation factor-1 alpha
promoter (pEF1a). A self-cleaving peptide (P2A, T2A, respectively)
was used to incorporate fluorescent proteins for FACS and a wood-
chuck hepatitis virus post-transcriptional regulatory element (WPRE)
was used to stabilize mRNA transcript levels. Metastasis-competent
human triple-negative breast cancer cells (MDA-MB-231) were trans-
duced with fresh lentivirus and subsequently sorted with gates for
high expression (top 3%) of both tdTomato and zsGreen fluorescence
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Figure 1.

Principle of Oatp1b3 as a reporter gene for cancer cell tracking. A, Synthetic expression of the OATP1B3 transporter by cancer cells enables Gd-EOB-DTPA
uptake into the cellular cytoplasm compartment of cells. This causes increased spin-lattice relaxation of water protons, which can be detected with
T1-weighted MRI producing high-resolution 3D images with anatomical context. B, Genetic constructs for transgene expression via lentiviral integration. For
BLI, human codon-optimized firefly luciferase (FLuc2) was co-encoded with tdTomato fluorescent protein, which was used as a marker for cell sorting.
For MRI, OATP1B3 was co-encoded with zsGreen1 fluorescent protein for cell sorting, long terminal repeat (LTR), human elongation factor-1 alpha promoter,
pEF1a, self-cleaving peptides, P2A, T2A, and woodchuck hepatitis virus post-transcriptional regulatory element, WPRE. C, Anti-OATP1B3 Western blot of
cells engineered with luciferase (Luc-CTL; blue), cells engineered with luciferase and oatp1b1 (Luc-1B1; gray), and cells engineered with luciferase and oatp1b3
(Luc-1B3; red). Signal intensity profiles are outlined along position of Western blot. Ladder profile is shown in black. Nonspecific peaks and OATP1B3-specific
peaks of unmodified, phosphorylated, and glycosylated OATP1B3 are indicated by arrows. D, 3D rendering of AlphaFold prediction for OATP1B3 structure,
illustrated with single residue-resolved confidence score. pLDDT, predicted local-distance difference test. E, Transmission electron microscopy of Luc-1B3
cells incubated with or without 1-mM Gd-EOB-DTPA for 1 hour. Gd(III) appears as black foci, indicated by yellow arrows. F, Average radiance (p/s/cm2/sr) of
increasing numbers of Luc-CTL (blue) and Luc-1B3 cells (red) per well, n ¼ 3. P > 0.05, ns, nonsignificant. Representative image of well plate. Error bars, SD.
(A, Created with BioRender.com.)
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with > 98% purity to obtain stable luciferase-expressing control cells
(Luc-CTL), as well as cells with stable coexpression of luciferase
and oatp1b3 (Luc-1B3).

Immunoblotting of cell lysates for OATP1B3 protein confirmed
its absence in Luc-CTL cells, whereas four peaks at distinct molec-
ular weights, measured at 84 kDa, 92 kDa, 112 kDa, and 120 kDa
developed in the Luc-1B3 lane (Fig. 1C). Nonspecific bands across
all samples were observed at about 60 kDa, 65 kDa, and 72 kDa
(Fig. 1C). Some posttranslational modifications of OATP1B3 have
previously been reported; namely, two glycosylation sites have been
associated with its trafficking to the cell membrane and its func-
tionalization (32), whereas increased phosphorylation of OATP1B3
was correlated with downregulation of its transport activity (33).
Band analysis with FindMod-ExPASy (expasy.org, Swiss Institute of
Bioinformatics; ref. 34) resulted in identification of the 84 kDa band
as the unmodified transporter, the band at about 92 kDa as the
phosphorylated protein, and the wide band about 112 kDa as the
glycosylated transporter with > 95% confidence. Finally, the less
intense peak at about 120 kDa was identified as OATP1B3 that is

both glycosylated and phosphorylated, albeit with < 95% confi-
dence (35). We outline our post-regulatory site predictions for
OATP1B3 in Supplementary Table S2. Importantly, the blot sug-
gests that a significant proportion of the protein synthesized by
engineered MDA-MB-231 cells has undergone the glycosylation
necessary for functionalization (75.8%, AUC ¼ 40.9 a.u.), whereas a
smaller fraction [12.3%, AUC ¼ 6.61 arbitrary units (a.u.)] was
phosphorylated but not glycosylated (Fig. 1C).

AlphaFold (36) was employed to predict molecular structure of
OATP1B3 (Identifier AF-Q9NPD5-F1), generating a model with an
overall confidence score (predicted local distance difference test,
pLDDT) of 77.6% (Fig. 1D; Supplementary Fig. S1). Processing of
the OATP1B3 protein sequence and structure (UniProtKB ID
SO1B3_HUMAN, UniProtKB Accession Q9NPD5–1), first through
iPTMnet (research.bioinformatics.udel.edu/iptmnet/, University
of Delaware, Newark, DE; ref. 37), then subsequently via GlyGen
(glygen.org, University of Georgia, Athens, GA; ref. 38) and Phos-
phoSitePlus (phosphosite.org; Cell Signaling Technology; ref. 39)
resulted in identification of 8 extracellular N-linked glycosylation sites
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Figure 2.

Characterization of biochemical, magnetic relaxation, and kinetic properties of Gd-EOB-DTPA in a system of mammalian cells expressing Oatp1b3.
A, Inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III) (ng) from lysate of a million Luc-CTL (blue) and Luc-1B3 (red) cells incubated with
variable [Gd-EOB-DTPA] for 1 hour, n ¼ 3; R2 ¼ 0.82. Gdi,max, maximum intracellular Gd(III) mass projected (per million cells). B, T1 time (ms) measured at
variable field strength (MHz) of Luc-CTL (blue), Luc-1B1 (gray), and Luc-1B3 (red) cells incubated with either 16 mmol/L Gd-DTPA or Gd-EOB-DTPA for 1 hour.
SBR ratio (a.u.) of R1 relaxation rates of Luc-1B1 (green) and Luc-1B3 (red) cells incubated with Gd-EOB-DTPA is shown in the embedded graph. Background is
Luc-CTL cells at the same field strength and probe condition. n ¼ 3. C, R1 relaxation rates (Hz) measured at 3 T and 37�C of Luc-CTL (blue) and Luc-1B3 (red)
cells incubated with Gd-DTPA or Gd-EOB-DTPA for 1 hour. n¼ 3. D, R1 relaxation rates (Hz) of Luc-1B3 cells at 3 T incubated with 16 mmol/L Gd-EOB-DTPA for
variable incubation times at 37�C. n ¼ 3. Regression of Luc-1B3 R1 rates, the first derivative of the regression, Luc-CTL cells incubated with Gd-EOB-DTPA for
90 minutes (blue), Luc-1B3 cells incubated with Gd-DTPA for 90 minutes (pink), and phosphate buffered saline (gray) are also plotted. E, R1 relaxation rates
(Hz) of variable Luc-CTL and Luc-1B3 cell ratios at 3 T and 37�C incubated with 16 mmol/L Gd-EOB-DTPA for 1 hour. Red filled circles, average values; pink
open circles, individual trial measurements. Shading, SD. n ¼ 3; R2 ¼ 0.98. 	 , P < 0.05; 		 , P < 0.01; 			, P < 0.001; 				 , P < 0.0001.
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Deep tissue imaging of primary tumors andmetastatic lesions viaOatp1b3-MRI.A, Spontaneousmetastasis model. MDA-MB-231 cells were implanted orthotopically
into the left-bearing 4th mammary fat pad of a NSGmouse. Over time, the cells metastasize to the ipsilateral axillary lymph node, to the contralateral axillary lymph
node, and to the lungs.B,Radiance (p/s/cm2/sr) from Luc-CTL (N¼ 7; blue) and Luc-1B3 primary tumors (N¼ 10; red) over time. P >0.05, ns, nonsignificant.C, Same
day BLI. Pre- and postcontrast T1-weighted MR images of representative Luc-1B3 mouse 12 days post cell implantation at the primary tumor site. Contrast
enhancement of primary tumor is outlined in yellow. Average T1-weighted signal intensity (a.u.) of Luc-CTL (N¼ 3; blue) and Luc-1B3 (N¼ 10; red) primary tumors
before and after Gd-EOB-DTPA administration. (Continued on the following page.)
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and 3 intracellular phosphoserine sites, as well as an intracellular serine
protease inhibitor motif characterized by 3 disulfide bonds (Supple-
mentary Table S2).

Transmission electron microscopy of Luc-1B3 cells incubated
with Gd-EOB-DTPA confirmed the influx of Gd(III) into the
cytoplasmic space of Luc-1B3 cells, where the paramagnetic center
would be free to interact with protons of the intracellular environ-
ment (Fig. 1E). Curiously, Gd(III) was also found encapsulated
within residual bodies, destined for exocytosis, suggesting a
distinct elimination pathway that to our knowledge has not previ-
ously been reported (Supplementary Fig. S2). Finally, BLI demon-
strated a strong positive linear correlation between cell number and
average radiance (p/s/cm2/sr) for both Luc-CTL (R2 ¼ 0.96) and
Luc-1B3 (R2 ¼ 0.95) cells in vitro. The slope of the linear regression
was not significantly different between Luc-CTL (55.2 � 8.1 p/s/
cm2/sr/cell) and Luc-1B3 cells (62.5 � 1.9 p/s/cm2/sr/cell; P ¼
0.22; Fig. 1F). This serves as an important control for BLI in later
animal experiments.

Solving for optimal parameters of imaging for oatp1b3-MRI
After cell engineering, we first set out to characterize the bio-

chemical, kinetic, and magnetic relaxation properties of the oatp1b3
reporter gene system in vitro (Fig. 2). First, Gd-EOB-DTPA uptake
in Luc-CTL and Luc-1B3 cells was measured as a function of
applied concentration via inductively coupled plasma mass spec-
trometry (Fig. 2A). A significant increase in intracellular Gd(III)
was observed in Luc-1B3 cells at all applied concentrations relative
to Luc-CTL cells (P < 0.05, n ¼ 3), but no significant difference was
observed between Luc-CTL cells treated with increasing Gd-EOB-
DTPA concentrations (P > 0.05, n ¼ 3), suggesting that Gd-EOB-
DTPA is highly specific to oatp1b3 and its uptake by non oatp1b3-
expressing cells is negligible within this timeframe (Fig. 2A). After
fitting the data to an exponential plateau model (R2 ¼ 0.81), the
maximum intracellular capacity of Gd(III) for our system was
calculated to be 1.66 mg Gd(III) per million cells, or approximately
1.66 pg Gd(III) per single cell (Fig. 2A), which signified that
channel-mediated transport of Gd-EOB-DTPA into cells constitu-
tively expressing oatp1b3 approaches saturation (99.6 � 18.0% of
maximum capacity) at 16 mmol/L Gd-EOB-DTPA.

Although the relaxivity of Gd(III)-based contrast agents, including
Gd-EOB-DTPA, decreases as a function of field strength and therefore
exhibits its greatest effects at low field (B0 < 0.05 T; Supplementary
Fig. S3), tissue R1 values also decrease along the same axis, and these
competing phenomena both affect the resultant contrast enhancement
that is central to our endeavor of detecting metastasis in vivowith high
sensitivity. As expected of nonengineered tissues, with increasing field
strength, where B0 2 (0.000233, 1.0009) T, we observed significant
increases in the T1 times of all cells treated with the control Gd-DTPA
probe (7.29-fold; P < 0.0001) and Luc-CTL cells treated with the
oatp1b3-targeted Gd-EOB-DTPA (6.94-fold; P < 0.0001; Fig. 2B). For
Luc-1B3 cells incubated with Gd-EOB-DTPA, Gd(III) becomes a
major contributing factor to spin-lattice relaxation time; the T1 time
still increased as a function of field strength (3.04-fold) but was

significantly lower than that of control samples (n ¼ 3, P <
0.0001; Fig. 2B). Notably, the difference in T1 time between Luc-
CTL and Luc-1B3 cells both treated with Gd-EOB-DTPA significantly
increased withmagnetic field strength (n¼ 3; P < 0.05; Fig. 2B). At the
lower field limit of 0.000233 T, DT1 between Luc-CTL and Luc-1B3
cells was 33.1� 4.0 ms but this difference increased to 541� 20 ms at
the upper field limit of 1.0009 T (n ¼ 3; P < 0.0001; Fig. 2B).

At a field strength of 3 T, Luc-1B3 cells incubated with low
(1.6 mmol/L) and high (16 mmol/L) Gd-EOB-DTPA concentrations
exhibited significantly increased R1 rates (1.32� 0.22, 3.80� 0.14 s�1,
respectively) compared with all other control conditions (n ¼ 3;
P ≤ 0.0001; Fig. 2C). Specifically, Luc-1B3 cells exhibited a 2.14 R1
signal-to-background ratio (SBR) at 1.6 mmol/L Gd-EOB-DTPA con-
centrations and a more substantial 5.02-fold R1 SBR at 16 mmol/L
Gd-EOB-DTPA concentrations (Fig. 2C), which was also greater than
the SBR measured at lower fields (SBR1T ¼ 3.23; Fig. 2B). At fields
greater than 3 T, however, Gd-EOB-DTPA relaxivity continues to
decrease (Supplementary Fig. S3) while spin-lattice relaxation rates
for all tissues become similar as they approach zero, resulting in the
marked reduction of contrast enhancement typically observed in high
field MRI (i.e., 7 T, 9.4 T; refs. 40, 41). We therefore reasoned that
imaging animals at mid-field (i.e., 3 T) would optimize SBR for in vivo
detection ofmetastases. All thewhile, tomaximize detection sensitivity
while mitigating any toxicity concerns from using concentrations of
Gd-EOB-DTPA higher than 16 mmol/L, which would result in only
incremental increases to SBR (Fig. 2A), we selected an applied
concentration of 16 mmol/L Gd-EOB-DTPA for all in vitro MRI
experiments, and a dose of 1.3 mmol/kg Gd-EOB-DTPA for in vivo
MRI experiments.

When Luc-1B3 cells were incubated with Gd-EOB-DTPA for
variable lengths of time, significant increases in R1 relative to Luc-CTL
cells were first observed at the 20-minute time point (1.33 � 0.20 Hz;
n ¼ 3, P ¼ 0.0015; Fig. 2D). The R1 of Luc-1B3 cells as a function
of Gd-EOB-DTPA treatment time was fit into a logistic growth curve
(R2¼ 0.98). Its slope reached amaximum at 32.9 minutes, after which,
uptake began to decrease (Fig. 2D). No significant difference
was observed between R1 at the 60-minute (5.03 � 0.28 Hz) and
90-minute time points (5.67 � 0.32 Hz; n ¼ 3, P ¼ 0.053) as the first
derivative approaches zero, suggesting that the intracellular Gd(III)
concentration detected via magnetic resonance approaches a steady
state (R1,max¼ 5.85Hz) at about 90minutes of incubation (96.9� 5.5%
of R1,max; Fig. 2D). The slow uptake kinetics observed here as well as
the slow cellular efflux of the probe (Supplementary Fig. S4) reinforces
the approach of previous work using oatp1a1, wherein SBR in mice
reached a maximum at approximately 5 h post Gd-EOB-DTPA
administration (23, 25).

Next, Luc-CTL and Luc-1B3 cells treatedwithGd-EOB-DTPAwere
combined at various cell number ratios and their spin-lattice relaxation
rates were measured at 3T. Relative to a pure sample of Luc-CTL cells
(i.e., 0% Luc-1B3; 0.365 � 0.013 Hz), the minimal volume fraction of
Luc-1B3 cells required for a significant increase in R1 relaxation rate
was 15% (0.96� 0.26 Hz; n¼ 3, P¼ 0.017; Fig. 2E). A strong positive
linear correlation between R1 relaxation rate and Luc-1B3 percent

(Continued.)D, 2D radiance (p/s/cm2/sr) and corresponding contrast-enhanced 3Dvolume (mm3) of individual Luc-1B3 tumors 12 days post cell implantation, n¼ 10.
Spearman rank coefficient,r ¼0.79; 			 ,P¼0.0085.E,Photonflux (p/s)measurements from the upper body of Luc-CTL (N¼ 7; blue) and Luc-1B3 (N¼ 10; red)mice
over time. Hollow symbols represent signals from BLI with no discernible metastatic foci, whereas filled symbols represent photon flux measurements during times
where at least one lesionwas detected. TD, doubling time. P >0.05, ns. F,BLI, pre- and postcontrast T1-weighted images of the upper body of representative Luc-CTL
andLuc-1B3mice 26dayspost cell implantation at theprimary tumor site. Average T1-weighted signal intensity (a.u.) of Luc-CTL (N¼ 3; blue) andLuc-1B3 (N¼8; red)
macrometastatic lesions before and after Gd-EOB-DTPA administration. 				 , P < 0.0001. (A, Created with BioRender.com.)
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fraction was observed (n¼ 3, R2¼ 0.98; Fig. 2E). In combination with
the R1 SBR ratios measured above, the results of these fractional 1B3
volume studies supported the feasibility of sensitive detection of
engineered cell populations in animals at high resolution.

Oatp1b3 does not affect overall metastatic burden in mice and
significantly enhances visualization of primary tumors and
metastatic lesions in vivo

Using the results from the in vitro characterization experiments,
we optimized our MRI parameters for in vivo longitudinal imaging
of a spontaneous metastasis model of breast cancer in mice (Fig. 3).
In this model, as the primary tumor grows, metastatic lesions were
expected to form across multiple lymph nodes and the lungs, as
observed by endpoint histology in previous literature (Fig. 3A;
ref. 42). It is worth noting that the temporal pattern of spread was
not yet established prior to our study, but that the chronology
reflected in Fig. 3A is evidenced by longitudinal oatp1b3-MRI data
presented in later figures. NOD/SCID gamma (NSG) mice were
implanted with 3 � 105 Luc-CTL (N ¼ 7) or Luc-1B3 (N ¼ 11)
MDA-MB-231 cells at the left 4th mammary fat pad and imaged via
BLI (150 mg/kg D-luciferin) every 2 days, and pre- and post-
contrast T1-weighted MRI at 3 T (1.3 mmol/kg Gd-EOB-DTPA)
were acquired on day 12 for the primary tumor and day 26 for the
upper body. Complete details on MRI parameters can be found in
Materials and Methods.

We first wanted to assess whether the oatp1b3 reporter gene system
interfered with primary tumor growth or metastatic progression. BLI
demonstrated that primary tumors grew in both Luc-CTL (N¼ 7) and
Luc-1B3 (N ¼ 10) burdened mice, with no significant difference (P >
0.42) in bioluminescent average radiance (p/s/cm2/sr) at each time-
point between the groups (Fig. 3B). As primary tumors grew, BLI
for metastatic lesions was performed by blocking light from the
lower body to enable detection of smaller populations of engineered
cells that may have metastasized to the upper body. No significant
difference was observed in upper body photon flux (p/s) over time
between Luc-CTL (N ¼ 7) and Luc-1B3 (N ¼ 10) mouse groups (P
¼ 0.18; Fig. 3E), suggesting that oatp1b3 reporter gene expression
neither inhibited nor promoted metastasis. The doubling time of
metastasis in the upper body for Luc-CTL mice was determined to
be 1.30 � 0.53 days compared with 1.24 � 0.59 days for Luc-1B3
mice (P ¼ 0.83; Fig. 3E).

On day 12, precontrast and postcontrast T1-weighted MRI at 3 T
exhibited an average 4.2-fold significant increase in signal intensity in
Luc-1B3 primary tumors (P < 0.0001; Fig. 3C), whereas Luc-CTL
primary tumors showed no difference between pre- and postcontrast
images (1.2-fold, P > 0.96; Supplementary Fig. S5). There was a strong
positive correlation between 2D radiance measurements from BLI and
3D contrast enhancement volumes generated via oatp1b3-MRI, with a
Spearman rank-order correlation coefficient (r) of 0.791 (n ¼ 9, P ¼
0.0085; Fig. 3D) and a linear regression correlation coefficient (R2) of
0.56 (n¼ 9, P ¼ 0.0055; Supplementary Fig. S6). However, it is worth
noting that the two systems were not absolutely correlated on day 12,
even when necrosis was not yet a factor, as indicated by the
homogeneity of contrast enhancement across all tumors on MRI
(Fig. 3D). On day 26, large contrast-enhanced metastatic lesions in
the upper body were observed in Luc-1B3 mice post contrast (N ¼
8), but not in Luc-CTL mice (N ¼ 3) following administration of
Gd-EOB-DTPA (Fig. 3F). Interestingly, the postcontrast signal
intensity of the metastatic masses on day 26 (4,630 � 970 a.u.)
was significantly greater than that of the pre-necrotic primary
tumor volume on day 12 (2,930 � 510 a.u.; P < 0.0001; Fig. 3F).

Imaging of spontaneous metastasis in single animals over time
via oatp1b3-MRI reveals that BLI largely obscures detection of
small, late-stage, and/or deep-seated lesions in mice

With the finding that the oatp1b3 reporter gene system did
not disable or promote metastatic progression, as evidenced on
BLI, and the auxiliary finding of greater contrast enhancement from
metastatic masses compared with their concomitant primary
tumors, we then explored the system’s capability of longitudinally
imaging the metastatic cascade via oatp1b3-MRI with a second
cohort of mice (N ¼ 7; Fig. 4). We wanted to determine the first
time point at which metastatic lesions were detectable with either
BLI or MRI. Mice were imaged according to the algorithm outlined
in Supplementary Fig. S7. Most mice were imaged up to day 22, but
smaller subsets were imaged at time points beyond day 22, includ-
ing day 26 (N¼ 3), day 30 (N¼ 3), and day 36 (N¼ 3), the endpoint
of which was determined by the health of each individual mouse.
For 5 of the 7 mice, metastatic lesions in the ipsilateral axillary
lymph node were detected on MRI at the same time point as BLI
(Fig. 4A) whereas two mice exhibited signals on MRI at this site up
to 48 hours prior to BLI signal being detected (Supplementary
Fig. S8). Significantly increased MR signal intensity (2,900 � 620 a.
u.) was exhibited relative to surrounding muscle tissue (1,120 � 110
a.u.; SBR ¼ 2.59) at the time of detection (n ¼ 7, P <
0.0001; Fig. 4B). On average, spontaneous metastases were first
detected 11.2 � 1.3 days post primary tumor implantation via
luciferase-BLI, and 10.2 � 0.8 days via oatp1b3-MRI (n ¼ 7, P >
0.05, ns).

The most frequently observed spatiotemporal pattern of metastasis
was continued growth of the initial metastatic lesion at the ipsilateral
axillary lymph node, which was observed with both luciferase-BLI and
oatp1b3-MRI (Fig. 4C). By day 22, all mice exhibited a significant
increase in signal intensity on T1-weighted images at the contralateral
axillary lymphnode (2,650� 790 a.u.; SBR¼ 2.44). These contralateral
lesions could not be resolved on BLI until day 25.4 � 1.3 due to light
scatter from the first metastatic lesion on the opposite side of the
animal (Dxavg ¼ 1.14 � 0.08 cm; Fig. 4D). Following this, oatp1b3-
MRI revealed that 6 of the 7 animals developed numerous micro-
metastatic lesions (< 1 mm3) in the lungs (Fig. 4E). Again, these lung
lesions were small and proximal to the larger lymph node lesions,
thereby preventing their detection with BLI (Fig. 4E).

Beyond this typical progression, there was marked divergence in
spatiotemporal patterns of metastasis betweenmice, even at early time
points. Direct-to-lung metastasis was observed in one mouse on day
10, as both the signal intensity and volume of the lesion in the lung (SI
¼ 3,460� 260 a.u.,V¼ 0.067mm3) was already greater than that of its
ipsilateral axillary lymph node lesion (SI¼ 2,510� 120 a.u.,V¼ 0.015
mm3; Fig. 4F); because of the lesion’s location behind the heart, as
indicated by T1-weighted images, BLI signals presented as diffuse and
relatively imprecise (Fig. 4F). In another case, ametastatic lesion in the
contralateral kidney was detected via oatp1b3-MRI on day 10 (SI ¼
5,670� 320 a.u., V¼ 0.071 mm3, d¼ 1.39 cm, SBR¼ 2.84; Fig. 4G),
but was not detected on BLI due to confounding signals stemming
from the primary tumor (Dx ¼ 1.66 cm). Two additional mice
exhibited metastasis to the kidneys onMRI at later dates, which again,
could not be resolved on BLI.

On day 22, a minority of mice (3/7) exhibited continued spread
through the lymphatic system to the ipsilateral brachial node on
T1-weighted images, but this was virtually impossible to detect on
BLI due to the proximity of the node (5.9 mm in one representative
mouse) to the initial metastatic lesion (Fig. 4H). In one mouse, liver
metastases (Vtotal ¼ 0.18 mm3) appeared and outpaced its lung
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metastases (Vtotal ¼ 0.025 mm3; Fig. 4I). In another case, an
extracranial metastasis in the head was detected via oatp1b3-MRI,
but was obscured on BLI, likely due to the depth of the lesion (d ¼
5.6 mm, V ¼ 0.15 mm3), relative to the larger, more superficial
lymph node metastasis (d ¼ 1.8 mm, V ¼ 0.68 mm3), in combi-
nation with its cavitation between bones in the head, as indicated by
T1-weighted images (Fig. 4J). Finally, one mouse also exhibited
metastasis to skeletal muscle (4,920 � 970 a.u., 0.43 mm3, SBR ¼
3.9) within its ipsilateral front leg, which was again undetected on
BLI due to its proximity to the initial lesion at the ipsilateral axillary
lymph node (Fig. 4K).

Oatp1b3-MRI enables detection of metastatic lesions
comprising as few as 103 cells on high resolution, three-
dimensional images of live mice

We attempted (n ¼ 1) to match micrometastases in the lungs
detected on MRI to corresponding lesions on whole-mouse histology

generated via the Xerra imaging system (EMIT Imaging). Coordinates
were conserved between the two 3D datasets in some localized regions
(Fig. 5A), but the lack of structural reinforcement in the lungs led to
considerable architectural deformation during histologic processing,
such that matching lesions from MR images to their precise locations
on histology proved challenging without nonrigid image registration
that would disturb image integrity considerably. Instead, to acquire an
independent estimate of our cellular detection limit, mice imaged on
day 30 were immediately sacrificed and the number of cells per
micrometastatic lesion in lung tissue was extrapolated from section
microscopy (Fig. 5B–E).

An analysis of mean signal intensity and volume of individual
metastatic foci demonstrated that, for 3 mice, 60 micrometastatic
lesions with significantly higher MRI signal than lung background
were present in the lungs at about 30 days post cell implantation
(Fig. 5B and C). None of these lesions were detectable with BLI.
Metastases as small as a single 200-mm isotropic imaging voxel
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(�0.01 mm3) were reliably detected above the mean lung signal
intensity (Fig. 5B). For an epithelial tumor cell line, literature values
equate a volume of 1 cm3 to approximately 108 cells (43). Back-
calculating from this conversion, 0.01 mm3 would equate to approx-
imately 103 cells per lesion assuming that these voxels were comprised
entirely of Luc-1B3 cells.However, it is alsoworth noting that the range
of signal intensities across these foci (1,778 ≤ SI ≤ 4,813 a.u.) did not
correlate with lesion size (R2¼ 0.059, P¼ 0.13), suggesting that many
of these micrometastatic volumes may not have been comprised
entirely of Luc-1B3 cells, and that a detection of limit of 103 cells is
possibly a conservative estimate. Ex vivomicroscopy measurements of
metastatic lesions supported our in vivo calculations, as well as the
hypothesis that the oatp1b3-MRI system can detect populations
comprising as few as 103 cells in lung tissue. Five lesions across three
mice comprised of greater than 103 cells, with the largest measured at
an estimated 3,840 cells, but all remaining lesions fell below this
threshold. Overall, on average, micrometastases in lung tissue on
day 30 were estimated to be comprised of 800 � 200 cells (n ¼ 3
mice, N ¼ 27 lesions).

Discussion
Tracking spatiotemporal patterns of metastatic spread in deep

tissues of single animals is an important experimental capability for
cancer research. Yet, sensitive and quantitative preclinical assessment
of metastatic disease with a high degree of accuracy remains a
significant challenge. Compared with traditional contrast agents,
reporter genes offer information on cell viability, and do not require

the presence of biomarkers to be specific to the cells of interest, as is
needed to study triple-negative breast cancer and many other cancer
subtypes. To overcome the intensiveness and sampling bias of tradi-
tional histology, the last decade has seen a surge of tissue clearing
methods that render large biological samples transparent and allow
3D views of large tissue volumes (44). Still, a major drawback of this
approach, as with histology, is that only a single time point can be
acquired of an individual animal, which in turn, necessitates proces-
sing of large numbers of animals to drawmeaningful conclusions (45).
This is an especially notable issue when working with spontaneous
metastasis models that exhibit high variability between animals with
respect to both the frequency and location of metastasis (46).

BLI avoids single time point limitations by providing sensitive
whole-body information on relative locations of cancer cells in
live mice, but we demonstrate that smaller cell populations largely
go undetected due to the presence of larger lesions. Specifically, we
show that small, single lesions positioned at distances > 1 cm from
larger engineered cell populations go undetected unless they grow to
substantial sizes before endpoint, and that populations of microme-
tastases in separate organs remain obscured throughout the BLI
timeline (Fig. 4). In summary, BLI observations are skewed towards
initial, superficial lesions, that may not necessarily progress and
respond to treatment in the same way as smaller, late-stage, and/or
deep-seated metastases located in distinct microenvironments (47). In
fact, promotion of metastasis by antitumor therapies has been previ-
ously demonstrated in several major studies (48–50). And on the
opposite end, it may be that successful treatments for metastasis have
been wrongly deemed ineffective simply because larger lesions
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dominated measurements (51). These and other complications con-
tribute to the difficulties in discovering antimetastatic therapies at the
preclinical stage as the threshold of metastatic prevention and/or
regression is extremely challenging to demonstrate with currently
available technologies (52, 53).

Oatp1b3-MRI overcomes many limitations for accurate spatio-
temporal tracking of metastatic spread in vivo. We show that this
system can dynamically track the metastatic process in its earliest
stages, at small lymph node lesions, even prior to BLI detection in
some cases. At late stages, we demonstrate its superiority over BLI
to track cancer spread to multiple lymph nodes and other deep-
seated organs on highly resolved images, owing to the inherent
absence of signal scatter and signal attenuation in MRI (Fig. 4).
In parallel, oatp1b3-MRI enabled detection of metastatic lesions
with high sensitivity, exhibiting an in vivo threshold on the order of
103 cells per lesion in the lungs (Fig. 5). Although the sites of
metastasis in this study are in close agreement with previously
published literature (42), and a pattern of metastasis similar to that
observed in human breast cancer patients is exhibited (54), detailed
tracking of metastatic spread in single animals from one location to
the next has not previously been demonstrated. Critically, imaging
mice at multiple time points with oatp1b3-MRI did not result in
differences in metastatic spread relative to control mice, making it
suitable for noninvasive assessment of antimetastatic therapies in
future studies.

Nonetheless, the oatp1b3-MRI system is itself not without limita-
tions. The chelatedGd(III) probe used in the systemhas been subjected
to scrutiny in the clinical setting due to findings of long-term retention
in human patients following multiple doses of contrast agent over
months or years (55). Whether Gd(III) specifically elicits cellular
injury within these depositions remains controversial, as no histologic
differences were observed between contrast and control groups in a
major study that investigated patient tissues posthumously (56). In our
own work, it should be noted that we administered relatively large
doses of Gd-EOB-DTPA (1.3 mmol/kg) multiple times to individual
mice throughout the experimental time course (Supplementary
Fig. S7). In this setting, we did not observe adverse effects immediately
after injection, and repeated dosing did not alter the pattern of
metastasis we observed compared with those of other publica-
tions (42, 57). While we expect that oatp1b3-MRI with Gd-EOB-
DTPA will be useful for tracking cancer cells and cancer-related cell
populations, e.g., cellular immunotherapies, at the preclinical stage, the
dose of the Gd(III) probe used here constrains clinical translation of
this system.

In parallel, opportunities also exist to improve the imaging capa-
bilities of oatp1b3-MRI with respect to both specificity and sensitivity.
On the matter of whole-body imaging, the stomach and intestines
exhibited high signal intensities on both precontrast and postcontrast
T1-weighted images, which may have obscured detection of small
metastases at these sites; in addition, the small molecule probe Gd-
EOB-DTPA does not readily cross the blood-brain barrier (BBB),
hindering detection of brain metastasis until lesions grow enough to
compromise BBB permeability. Although these issues can be address-
ed through fasting or additional steps that enable precontrast/
postcontrast image subtraction and focused-ultrasound BBB opening,
respectively, efforts are warranted to further optimize oatp1b3-MRI.
Simply but effectively, incorporating a potato diet for 24 hours before
imaging has been shown to practically eradicate nonspecific gastro-
intestinal T1-weighted signals in mice and should therefore be
implemented into all future oatp1b3-MRI animal protocols (58). In
addition, development of next-generation Gd(III)-free paramagnetic

probes targeting oatp1b3 is underway, and small lipophilic molecules
would be prime candidates to facilitate detection of brain metastasis
on oatp1b3-MRI with the BBB intact (59, 60).

However, one remaining blind spot with little room formitigation is
the gallbladder, as it represents a collection site for oatp1b3-targeted
probes that are categorically eliminated via the hepatobiliary pathway;
however, we believe this represents a minor drawback in the context of
the larger system. Finally, protein engineering provides opportunities
to further improve system parameters and functionalize oatp1b3 as a
biosensor. For example, removal of the protein’s downregulatory
phosphorylation sites may increase the steady state concentration of
OATP1B3 at the cell membrane for greater probe influx capacity;
directed evolution can be employed to screen for mutants with more
rapid probe-transport kinetics; and addition of sensory motifs can be
conjugated to the channel to enable imaging of events like deep-brain
neuronal activation. For now, however, oatp1b3-MRI offers a means
to track oatp1b3-engineered cells in deep tissues of live animals over
timewith combined high resolution andhigh sensitivity.We anticipate
that this platform will facilitate our abilities to cultivate clinically
predictive preclinical models of metastasis (61), expand our under-
standing of the metastatic process, and provide a means to rigorously
evaluate antimetastatic therapies in vivo.
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